Wei Wu 1,2Qibing Sun 1,2,*Yi Wang 1,2Yu Yang 3[ ... ]Leiran Wang 1,2,4
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
4 e-mail: lionking@opt.ac.cn
Microresonator-based optical frequency combs are broadband light sources consisting of equally spaced and coherent narrow lines, which are extremely promising for applications in molecular spectroscopy and sensing in the mid-infrared (MIR) spectral region. There are still great challenges in exploring how to improve materials for microresonator fabrication, extend spectral bandwidth of parametric combs, and realize fully stabilized soliton MIR frequency combs. Here, we present an effective scheme for broadband MIR optical frequency comb generation in a MgF2 crystalline microresonator pumped by the quantum cascade laser. The spectral evolution dynamics of the MIR Kerr frequency comb is numerically investigated, revealing the formation mechanism of the microresonator soliton comb via scanning the pump-resonance detuning. We also experimentally implement the modulation instability state MIR frequency comb generation in MgF2 resonators covering from 3380 nm to 7760 nm. This work proceeds microresonator-based comb technology toward a miniaturization MIR spectroscopic device that provides potential opportunities in many fields such as fundamental physics and metrology.
Photonics Research
2022, 10(8): 1931
Xinyu Wang 1,2Peng Xie 1,2Weiqiang Wang 1,2,4,*Yang Wang 1,2[ ... ]Wenfu Zhang 1,2,5,*
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
4 e-mail: wwq@opt.ac.cn
5 e-mail: wfuzhang@opt.ac.cn
Soliton microcombs (SMCs) are spontaneously formed in a coherently pumped high-quality microresonator, which provides a new tool for use as an on-chip frequency comb for applications of high-precision metrology and spectroscopy. However, generation of SMCs seriously relies on advanced experimental techniques from professional scientists. Here, we experimentally demonstrate a program-controlled single SMC source where the intracavity thermal effect is timely balanced using an auxiliary laser during single SMC generation. The microcomb power is adopted as the criteria for microcomb states discrimination and a forward and backward thermal tuning technique is employed for the deterministic single SMC generation. Further, based on a closed-loop control system, the repetition rate stability of the SMC source improved more than 20 times and the pump frequency can be continuously tuned by simply changing the operation temperature. The reliability of the SMC source is verified by consecutive 200 generation trials and maintaining over 10 h. We believe the proposed SMC source will have significant promising influences in future SMC-based application development.
Photonics Research
2021, 9(1): 01000066
Author Affiliations
Abstract
1 FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Science and Education Park, Fuzhou University, Jinjiang 362200, China
2 Department of Physics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
5 QXP Technology, Xi'an 710311, China
6 Department of Microelectronics Science and Technology, Qi Shan Campus, Fuzhou University, Fuzhou 350108, China
7 Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Nonlinear high-harmonic generation in micro-resonators is a common technique used to extend the operating range of applications such as self-referencing systems and coherent communications in the visible region. However, the generated high-harmonic emissions are subject to a resonance shift with a change in temperature. We present a comprehensive study of the thermal behavior induced phase mismatch that shows this resonance shift can be compensated by a combination of the linear and nonlinear thermo-optics effects. Using this model, we predict and experimentally demonstrate visible third harmonic modes having temperature dependent wavelength shifts between -2.84 pm/℃ and 2.35 pm/℃ when pumped at the L-band. Besides providing a new way to achieve athermal operation, this also allows one to measure the thermal coefficients and Q-factor of the visible modes. Through steady state analysis, we have also identified the existence of stable athermal third harmonic generation and experimentally demonstrated orthogonally pumped visible third harmonic modes with a temperature dependent wavelength shift of 0.05 pm/℃ over a temperature range of 12 ℃. Our findings promise a configurable and active temperature dependent wavelength shift compensation scheme for highly efficient and precise visible emission generation for potential 2f-3f self-referencing in metrology, biological and chemical sensing applications.
third-harmonic generation thermodynamics micro-resonators 
Opto-Electronic Advances
2020, 3(12): 12200028
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
2 University of Chinese Academy of Sciences, Beijing, China
Optical frequency combs, a revolutionary light source characterized by discrete and equally spaced frequencies, are usually regarded as a cornerstone for advanced frequency metrology, precision spectroscopy, high-speed communication, distance ranging, molecule detection, and many others. Due to the rapid development of micro/nanofabrication technology, breakthroughs in the quality factor of microresonators enable ultrahigh energy buildup inside cavities, which gives birth to microcavity-based frequency combs. In particular, the full coherent spectrum of the soliton microcomb (SMC) provides a route to low-noise ultrashort pulses with a repetition rate over two orders of magnitude higher than that of traditional mode-locking approaches. This enables lower power consumption and cost for a wide range of applications. This review summarizes recent achievements in SMCs, including the basic theory and physical model, as well as experimental techniques for single-soliton generation and various extraordinary soliton states (soliton crystals, Stokes solitons, breathers, molecules, cavity solitons, and dark solitons), with a perspective on their potential applications and remaining challenges.
optical frequency comb soliton microcomb microcavity photonic integration Kerr effect four-wave mixing 
Advanced Photonics
2020, 2(3): 034001
Mulong Liu 1,2Leiran Wang 1,2,*Qibing Sun 1Siqi Li 1,2[ ... ]Wei Zhao 1,2
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: wfuzhang@opt.ac.cn
We investigate frequency-comb generation in normal dispersion silicon microresonators from the near-infrared to mid-infrared wavelength range in the presence of multiphoton absorption and free-carrier effects. It is found that parametric oscillation is inhibited in the telecom wavelength range resulting from strong two-photon absorption. On the contrary, beyond the wavelength of 2200 nm, where three- and four-photon absorption are less detrimental, a comb can be generated with moderate pump power, or free-carriers are swept out by a positive-intrinsic-negative structure. In the temporal domain, the generated combs correspond to flat-top pulses, and the pulse duration can be easily controlled by varying the laser detuning. The reported comb generation process shows a high conversion efficiency compared with anomalous dispersion regime, which can guide and promote comb formation in materials with normal dispersion. As the comb spectra cover the mid-infrared wavelength range, they can find applications in comb-based radiofrequency photonic filters and mid-infrared spectroscopy.
Nonlinear optics, four-wave mixing Nonlinear optics, integrated optics Parametric oscillators and amplifiers Microcavities 
Photonics Research
2018, 6(4): 04000238
Xiaohong Hu 1,2Weiqiang Wang 1,2,3Leiran Wang 1,2Wenfu Zhang 1,2,3,4,*[ ... ]Wei Zhao 1
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 China-UK Joint Research Center on Micro/Nano Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, China
4 e-mail: wfuzhang@opt.ac.cn
5 e-mail: Yshwang@opt.ac.cn
Dual-pumped microring-resonator-based optical frequency combs (OFCs) and their temporal characteristics are numerically investigated and experimentally explored. The calculation results obtained by solving the driven and damped nonlinear Schr dinger equation indicate that an ultralow coupled pump power is required to excite the primary comb modes through a non-degenerate four-wave-mixing (FWM) process and, when the pump power is boosted, both the comb mode intensities and spectral bandwidths increase. At low pump powers, the field intensity profile exhibits a cosine variation manner with frequency equal to the separation of the two pumps, while a roll Turing pattern is formed resulting from the increased comb mode intensities and spectral bandwidths at high pump powers. Meanwhile, we found that the power difference between the two pump fields can be transferred to the newly generated comb modes, which are located on both sides of the pump modes, through a cascaded FWM process. Experimentally, the dual-pumped OFCs were realized by coupling two self-oscillating pump fields into a microring resonator. The numerically calculated comb spectrum is verified by generating an OFC with 2.0 THz mode spacing over 160 nm bandwidth. In addition, the formation of a roll Turing pattern at high pump powers is inferred from the measured autocorrelation trace of a 10 free spectral range (FSR) OFC. The experimental observations accord well with the numerical predictions. Due to their large and tunable mode spacing, robustness, and flexibility, the proposed dual-pumped OFCs could find potential applications in a wide range of fields, including arbitrary optical waveform generation, high-capacity optical communications, and signal-processing systems.
Nonlinear optics, four-wave mixing Nonlinear optics, integrated optics Parametric oscillators and amplifiers Microcavities 
Photonics Research
2017, 5(3): 03000207

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!